skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Losego, Mark"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In situ optical measurements during chemical vapor deposition processes can offer insight into the chemical reactions and electronic phenomena that are occurring during a process. However, the tooling to make these measurements can be complex, difficult to align, and may even require a redesign of the entire vacuum deposition chamber. Herein, we present a setup that allows for in situ optical measurements using vacuum-compatible fiber optics that only requires a singular conflat feedthrough, eliminating the need for optical viewports and alignment of external light sources/detectors. Proof of performance is shown with a neutral density filter and an exemplary application of vapor doping a conjugated polymer (poly-3-hexylthiophene) using vapor-phase TiCl4. 
    more » « less
    Free, publicly-accessible full text available September 5, 2026
  2. Vapor phase infiltration (VPI) is a vapor processing technique that converts polymers into organic–inorganic hybrid materials with modified properties. VPI of polymer membranes stabilizes against dissolution and swelling in organic liquids, opening up new opportunities for use in organic solvent reverse osmosis (OSRO) separations. However, the precise chemical structure of the infiltrated inorganic components remains poorly understood, limiting the potential to fully exploit process–structure–property relations for materials design and slowing the development of new hybrid membranes. This study explores the structural characteristics contributing to the chemical stability of PIM-1/ZnOxHy hybrid membranes through advanced spectroscopic techniques to clarify the chemistry and inorganic cluster formation in these materials that lead to enhanced stability in solvents that otherwise swell or dissolve the pure polymer. X-ray photoelectron spectroscopy (XPS) indicates a predominantly zinc hydroxide chemistry with higher proportions of oxide forming only at increasing cycle counts. Extended X-ray absorption fine structure (EXAFS) spectroscopy provides new understanding of the first and second coordination shells. These results indicate that the size of the clusters increases with prolonged VPI precursor exposure and additional VPI cycles, leading to improvements in membrane solvent stability. These findings offer a new understanding for how the physicochemical structure of these hybrid membranes can be characterized and then used to design for a desired performance. 
    more » « less
    Free, publicly-accessible full text available July 30, 2026
  3. Vapor phase infiltration (VPI) enables the fabrication of novel organic–inorganic hybrid materials with distinctive properties by infiltrating polymers with inorganic species through a top-down approach. However, understanding the process kinetics is challenging due to the complex interplay of sorption, diffusion and reaction processes. This study examines how polymer network flexibility affects the kinetics of diethylzinc (DEZ) infiltration into a highly crosslinked polyacrylate copolymer system composed of two monomers: trimethylolpropane triacrylate (TMPTA) and ethoxylated trimethylolpropane triacrylate (ETPTA). The findings show that increasing the ratio of ETPTA, which enhances network flexibility, facilitates precursor diffusion, resulting in deeper infiltration and faster saturation. A reaction–diffusion transport model is employed to qualitatively interpret the experimental results and gain insights into the underlying process mechanisms, thus contributing to a better understanding of VPI kinetics. 
    more » « less
  4. Vapor phase infiltration (VPI) is a post-polymerization modification technique that infuses inorganics into polymers to create organic–inorganic hybrid materials with new properties. Much is yet to be understood about the chemical kinetics underlying the VPI process. The aim of this study is to create a greater understanding of the process kinetics that govern the infiltration of trimethyl aluminum (TMA) and TiCl 4 into PMMA to form inorganic-PMMA hybrid materials. To gain insight, this paper initially examines the predicted results for the spatiotemporal concentrations of inorganics computed from a recently posited reaction–diffusion model for VPI. This model provides insight on how the Damköhler number (reaction versus diffusion rates) and non-Fickian diffusional processes (hindering) that result from the material transforming from a polymer to a hybrid can affect the evolution of inorganic concentration depth profiles with time. Subsequently, experimental XPS depth profiles are collected for TMA and TiCl 4 infiltrated PMMA films at 90 °C and 135 °C. The functional behavior of these depth profiles at varying infiltration times are qualitatively compared to various computed predictions and conclusions are drawn about the mechanisms of each of these processes. TMA infiltration into PMMA appears to transition from a diffusion-limited process at low temperatures (90 °C) to a reaction-limited process at high temperatures (135 °C) for the film thicknesses investigated here (200 nm). While TMA appears to fully infiltrate these 200 nm PMMA films within a few hours, TiCl 4 infiltration into PMMA is considerably slower, with full saturation not occurring even after 2 days of precursor exposure. Infiltration at 90 °C is so slow that no clear conclusions about mechanism can be drawn; however, at 135 °C, the TiCl 4 infiltration into PMMA is clearly a reaction-limited process, with TiCl 4 permeating the entire thickness (at low concentrations) within only a few minutes, but inorganic loading continuously increasing in a uniform manner over a course of 2 days. Near-surface deviations from the uniform-loading expected for a reaction-limited process also suggest that diffusional hindering is high for TiCl 4 infiltration into PMMA. These results demonstrate a new, ex situ analysis approach for investigating the rate-limiting process mechanisms for vapor phase infiltration. 
    more » « less
  5. A solvent-free post-treatment process known as vapor phase infiltration (VPI) is used to engineer the organic solvent reverse osmosis (OSRO) performance of polymer of intrinsic microporosity 1 (PIM-1) membranes via infiltration of trimethylaluminum (TMA) metal-organic vapor. The infiltration of inorganic aluminum constituents hybridizes the pure polymer PIM-1 into an organic-inorganic material (AlOxHy/PIM-1) with enhanced chemical stability. A homogenous distribution of inorganic loading in PIM-1 is achieved due to the reaction-limited infiltration mechanism, and the OSRO performance is enhanced as a result. OSRO separations of ethanol/isooctane mixtures using these membranes are shown to be capable of breaking the azeotropic composition with a separation factor for ethanol over isooctane greater than 5 and an ethanol permeance of 0.1 Lm–2h–1bar–1. Thus, these organic-inorganic hybrid membranes created via VPI show promise as an alternative method for separating azeotropic liquid mixtures. 
    more » « less
  6. Photopatterning of polymers enables the microfabrication of numerous microelectronic, micromechanical, and microchemical systems. The incorporation of inorganics into a patterned polymer material can generate many new interesting properties such as enhanced stability, optical performance, or electrical properties. Vapor phase infiltration (VPI) allows for the creation of hybrid organic–inorganic materials by infiltrating polymers with gaseous metalorganic precursors. This study seeks to explore the potential of integrating VPI with existing photopatterning techniques to achieve top-down hybridization and property modification of polymer structures of different complexity. For this, VPI of diethylzinc (DEZ) is studied for four highly crosslinked acrylate networks that can be patterned by photolithography and two-photon polymerization (2PP): pentaerythritol triacrylate (PETA), pentaerythritol tetraacrylate (PETeA), trimethylolpropane triacrylate (TMPTA) and ethoxylated trimethylolpropane triacrylate (ETPTA). The findings show that for highly crosslinked polymer networks, VPI can be limited by slow precursor diffusion. However, by introducing flexible segments (e.g., ethoxylated chains), the polymer's free volume can be increased, and infiltration is accelerated, leading to faster infiltration times and higher and more uniform inorganic loading. Finally, selective infiltration of ZnO into photolithographically patterned copolymer networks of TMPTA and ETPTA on non-infiltrating poly(methyl methacrylate) (PMMA) is demonstrated illustrating the potential of VPI for advanced maskless patterning strategies. 
    more » « less
  7. In this work, the vapor-phase infiltration (VPI) of polyethylene terephthalate (PET) fabrics with trimethylaluminum (TMA) and coreaction with water vapor is explored as a function of limiting TMA reagent conditions versus excess TMA reagent conditions at two infiltration temperatures. TMA is found to sorb rapidly into PET fibers, with a significant pressure drop occurring within seconds of TMA exposure. When large quantities of polymer are placed within the chamber, minimal residual precursor remains at the end of the pressure drop. This rapid and complete sorption facilitates the control of inorganic loading by purposely delivering a limited quantity of the TMA reagent. The inorganic loading for this system scales linearly with a Precursor:C=O molar ratio of up to 0.35 at 140 °C and 0.5 at 80 °C. After this point, inorganic loading is constant irrespective of the amount of additional TMA reagent supplied. The SEM analysis of pyrolyzed hybrids indicates that this is likely due to the formation of an impermeable layer to subsequent infiltration as the core of the fibers remains uninfiltrated. The Precursor:C=O molar ratio in the subsaturation regime is found to tune the hybrid fabric morphology and material properties such as the optical properties of the fabric. Overall, this work demonstrates how a reagent-limited processing route can control the inorganic loading in VPI synthesized hybrid materials in a simpler manner than trying to control kinetics-driven methods. 
    more » « less
  8. Abstract The sublimation enthalpy, , is a key thermodynamic parameter governing the phase transformation of a substance between its solid and gas phases. This transformation is at the core of many important materials' purification, deposition, and etching processes. While can be measured experimentally and estimated computationally, these approaches have their own different challenges. Here, we develop a machine learning (ML) approach to rapidly predict from data generated using density functional theory (DFT). We further demonstrate how combining ML and DFT methods with active learning can be efficient in exploring the materials space, expanding the coverage of the computed dataset, and systematically improving the ML predictive model of . With an error of kJ/mol in instantaneous predictions of , the ML model developed in this work will be useful for the community. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  9. Poly(3,4-ethylene dioxythiophene) (PEDOT) has a high theoretical charge storage capacity, making it of interest for electrochemical applications including energy storage and water desalination. Nanoscale thin films of PEDOT are particularly attractive for these applications to enable faster charging. Recent work has demonstrated that nanoscale thin films of PEDOT can be formed using sequential gas-phase exposures via oxidative molecular layer deposition, or oMLD, which provides advantages in conformality and uniformity on high aspect ratio substrates over other deposition techniques. But to date, the electrochemical properties of these oMLD PEDOT thin films have not been well-characterized. In this work, we examine the electrochemical properties of 5–100 nm thick PEDOT films formed using 20–175 oMLD deposition cycles. We find that film thickness of oMLD PEDOT films affects the orientation of ordered domains leading to a substantial change in charge storage capacity. Interestingly, we observe a minimum in charge storage capacity for an oMLD PEDOT film thickness of ∼30 nm (60 oMLD cycles at 150 °C), coinciding with the highest degree of face-on oriented PEDOT domains as measured using grazing incidence wide angle X-ray scattering (GIWAXS). Thinner and thicker oMLD PEDOT films exhibit higher fractions of oblique (off-angle) orientations and corresponding increases in charge capacity of up to 120 mA h g −1 . Electrochemical measurements suggest that higher charge capacity in films with mixed domain orientation arise from the facile transport of ions from the liquid electrolyte into the PEDOT layer. Greater exposure of the electrolyte to PEDOT domain edges is posited to facilitate faster ion transport in these mixed domain films. These insights will inform future design of PEDOT coated high-aspect ratio structures for electrochemical energy storage and water treatment. 
    more » « less